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Abstract. The method of third-order mode coupling is applied to a general evolution 
equation, which includes as special cases many of the modified and higher-order Korteweg- 
de Vries equations which have recently appeared in the literature. The equations for the 
slow changes in the amplitudes and phases are derived and specialised to two different 
classes of evolution equations. The first class exhibits the property of non-resonant mode 
decoupling, the evolution of each wave being governed only by its own parameters. 
Included in this class are the KdV equation, some of the mKdV equations and the 
Sharma-Tasso-Olver equation. Equations of the second class leave the amplitudes and 
hence the energetics of the waves constant as long as the mode coupling is non-resonant. 
Here one finds the fifth-order KdV equations, besides the KdV and STO equations. 

1. Introduction 

In a previous paper (Verheest and Eeckhout 1977) the Korteweg-de Vries equation 
was found to possess the remarkable property that in a perturbation scheme, in which 
the linear term is a superposition of plane waves, the waves also decouple in third order. 
The slow time variation of each wave is then determined only by the parameters 
(amplitude and wavenumber) of that wave itself, as if it were the only wave present at 
this stage in the perturbation scheme. Such a kind of nonlinear superposition is rather 
unusual, hence the search for other PDES with a similar property. In a subsequent paper 
(Verheest and Hereman 1979) some other equations were found, besides the K d v  
equation, startingfrom a general class of PDES in which each term was linear in the space 
derivatives, although the coefficients were functions of the dependent variable. 
Recently a great number of new nonlinear evolution equations have appeared in the 
literature (some examples will be given in the next section), in the wake of the renewed 
interest in the K d v  equation and generalisations since the pioneering work of Gardner et 
a1 (1967). Most of these evolution equations or higher-order modified KdV equations 
are, however, nonlinear in the derivatives and it seemed thus worthwhile to rework the 
analysis, starting from a more general PDE which would include most of the equations 
now being studied by other means or for other purposes. 

A perturbation scheme is used, in which the dependent variable is expanded 
together with a two-timescale approach. In the resulting set of equations the first one is 
linear and for the solution a superposition of plane waves is taken, which amounts to 
some kind of Fourier analysis, and is hence rather general. The Yequirement that the 
expansion be non-secular then leads in third order to equations giving the slow 
variations in amplitude and phase of the waves. In general these are all coupled, except 
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for certain classes of equations which are found from the decoupling condition. If the 
amplitude equations would not decouple, the number of waves in the linear super- 
position becomes of paramount importance. This could introduce, on purely theoreti- 
cal grounds, an element of ambiguity in the method of wave interaction in third order, as 
the number of waves is not always a simple quantity to give, especially where some of 
the waves in a nonlinear interaction may grow out of the noise, with initially a negligible 
amplitude. Such a difficulty can only be avoided if one is sure to launch in a given 
experimental situation precisely three or four waves with frequencies and wavenumbers 
satisfying the appropriate third-order selection rules. Finally, classes of nonlinear 
evolution equations are given for which the amplitudes remain constant in third order, 
which means that such nonresonant interaction cannot change the wave energy. 

2. General formalism and third-order amplitude and phase equations 

As classes of evolution equations we consider the following nonlinear PDE in one 
dependent variable U : 
i l , + p t ( x l ,  rqu,,,,, = { A I u  +AzU2)U+(BlU+B2U 2 ) u , + ( C ~ U + C ~ U ~ ) U , ,  

(1) 

where p ,  q, A l  tc  Go are constants. 
The derivatives with respect to space or time have been indicated with the 

corresponding subscripts .Y or t .  Equation (1) is the most general one which includes up 
ti: three space derivatives per term, except for the linear part where a fifth derivative 
was included. Nonlinearities of higher order than cubic have been omitted, as later on 
we shall adopt a perturbation scheme in which we investigate effects up to third order 

The !inear part of (1) has been reduced to its most simple form through a judicious 
rescaling in x and 1. As a consequence, a term in U, ,  if occurring, can be eliminated, and 
for p and q only the following possibilities remain: 

-t- ( D1 U J- Dzri ' ) U , , ,  (Eo + El u ) u ;  + (Fo + F1 u)u,u,, + Gorr 3 , 

onlv. 

p = --1,0, i - 1  q = 1 or p = I  q -0. ( 2  1 
The motivation for studying a general equation of the type (1) lies in the fact that it 
includes a great many examples of nonlinear evolution equations, which have appeared 
recently in the literature. Included as special cases in (1) are the K d v  equation itself, the 
modified K d v  equations 

ll~i-LyL111,+pu21~,+u,,, -0 
{Driscoll and O'Neil 1976), the potential KdV or mKdV equations 

( 3 )  

14) 3 2 ut + ll,,, + CYU , + pu , = 0 

U ,  -+- 3uf + ~ U ' L I ,  + ~ u u , ,  + U,,, = 0 

(Fokas 19801, the Sharma-Tasso-Olver equation 

( 5 )  

(Sharma and Tasso 1977, Olver 1977), the K d v  equation with higher-order dispersion 

(6) 
(Kodama and Taniuti 1978), and then a spate of fifth-order KdV equations, which 
cannot be rescaled into each other, such as the Sawada-Kotera or Caudrey-Dodd- 

u t  -I- U U ,  1- U,,, -t Ll,,,,, = 0 
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Gibbon equation 
ut + 5 u2ux + 5 uxuxx + 5 uuxxx + uxxxxx = 0 

(Sawada and Kotera 1974, Caudrey et a1 1976), the Lax equation 

ut +30u2ux + 20uxuxx + 10uuxxx + uxxxXx = 0 

ut +20u2ux +25uxuxx + louuxxx + uxxxxx = 0 

(8) 

(9)  

(Lax 1968), the Kaup-Kupershmidt equation 

(Hirota aad Ramani 1980, Fordy and Gibbons 1980) and the higher-order Sawada- 
Kotera equation 

ut + 2 U ux + 6 uxuxx + 3 uu,,, + uxxxxx = 0 (10) 
(It0 1980). 

We now expand the dependent variable U in terms of some small parameter E ,  

(11) 2 3 u=&Ul+E U 2 + &  U 3 +  . . .  
and use a two-time-scale approach 

(12)  

This is similar to what was done before, for other types of equations (Verheest and 
Eeckhout 1977, Verheest and Hereman 1979). The ordering used precludes 
phenomena on the tl = Et time scale. Such phenomena are of the three-wave inter- 
action type, have been extensively studied in the literature and are always resonant, 
hence irrelevant in the context of the present study. The precise determination of E will 
have to be made on physical grounds in a given situation. As a single example, the study 
of third-harmonic generation in nonlinear optics (Armstrong et a1 1962), the ratio of 
the cubic to the linear susceptibilities determines the expansion scheme. Without a 
quadratic susceptibility only third-order interactions are possible. Slow spatial scales 
have not been included, because this conceptually leads to similar conclusions as drawn 
later on, at the price, however, of much more involved calculations. 

There is no zeroth-order term in (1 l), because it is always possibile to eliminate such 
a term by a suitable shift in U ,  together with a redefinition of the coefficients occurring in 
(1) .  The set of equations which replaces (1) is then found to be 

Lu1= 0 
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Here the linear operator L is defined as 

a a3 as 
ato ax ax 

L = -+p 3+ q 5. 

where in the phase of each wave the particular dispersion corresponding to L has 
already been taken into account. As the first equation (13) is now satisfied, the second 
equation (1 3) yields 

The avoidance of secular terms in U:! requires that 

if 

Substitution of the form (15) for u1 and (18) for u2  into the last equation (13) gives 
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Use of the following abbreviations has been made: 

$j/m = (kj + k/ + km)[pLv;m -ClUL(kj + k/ + k m ) ] + A z - C ~ k f  -Elklkm 

y;m = (Tkj * k1+ km)[*pfml;m - Clvfm(Tkj * kl + k m ) ] + A ~ - C ~ k f  TEtklkm 

6;m =-(kj+kl* k m ) [ U : m v ; m + C l p f m ( k j + k / * k m ) ]  

T B z k m f D 2 k ;  *Flk:km*Gokjk/km 

(21) 

(;m = ( r k j * k / + k m ) [ - ~ / m l j l m r C l p : m ( r k j * k , + k m ) l  * *  

-B2km +D2k; +Flk:km-Gokjk/km 

where 
* = B l - D l [ k f  - kj(k/ * km) +(kl * km)2]-F~kj (k /  * km) 

[$, = B l - D l [ k ;  + k j ( k l * k m ) + ( k l * k m ) 2 ] + F g k j ( k l * k m ) .  
(22) 

rl jlm 

As cos 4j and sin 4j belong to the kernel of L, these terms will contribute to secularities 
in u3, if left in (20). The requirement that all such terms disappear from (20) gives the 
amplitude and phase equations in third order: 

3. Nonlinear decoupling 

The N waves in u1 will be said to decouple in third order whenever it is possible to 
reduce (23) to 

aa. 
2=aa;[k jp i l i j -C1k:u i  +3Az+(E1 -3C2)k f ]  
at2 

a'yi - ' - - 4kja;[u i l i j  + C l k j p i  + B z +  (3Go-Dz -Fdk; l  a t2  

(24) 

because then the slow variations in amplitude and phase of each wave are only 
determined by the parameters (amplitude and wavenumber) of that wave itself, 
regardless of whatever other waves are present. Such a decoupling requirement gives 
the following set of restrictions on the possible coefficients in (1):  

A1=0  A -  2 - -9BiCi 1 q(5B1-3PDi) = 0 

B 2--5qDt+-j-(C:+2BiDi) - 1 2 q-' qc1= 0 Eo= C1 Cz = -CID1 

D 2 -2 - 3(q - 1)D: 

Fi = 3 Go + a( 1 - q)Fo(Fo - 3 0 1 ) .  

(25) 
E -  1 - -3Ci(Fo 1 + 301)  q (Fo - 201)  = 0 
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This leads essentially to two different classes of nonlinear evolution equations, accord- 
ing to whether q vanishes or not. As a first class of equations we find 

2 ut+u,,, = -$pyu3+[pu - ; (y2+2PS)u2]u,  + y u ( l  - 6 U ) U x x  + S U ( l  -sSu)uxxx 

+ 711- (S + 4 5 ) U I U , 2  + ~ 5 + [ 3 C + $ 5 ( 5 - 3 S ) l U ~ U x ~ , ,  + C d  (26)  
where p, y, 8, 5 and C are constant parameters. The corresponding amplitude and phase 
equations are 

Included in (26)  are the K d v  equation, the Sharma-Tasso-Olver equation ( 5 )  (for the 
choice y = -3, p = S = 5 = 5 = 0) and the modified K d v  equations of the type 

ut + U,,, = ( 3 ~  + ~ u ' ) ( K u ,  - uXxx)  K = - I ,  0, + 1  (28)  

discussed earlier (Verheest and Hereman 1979). The other mKdV equations appearing 
in ( 3 )  or (4) do not possess this property of third-order decoupling. 

From (27)  the square of the amplitude is found to be 

This allows the computation of the phase ai if need be. The behaviour of U ;  ( t 2 )  will 
depend upon the sign of r[P + (5 - 3S)k;I.  If this expression is positive, an explosive 
instability occurs in a time T~ (on the slow time scale t 2 )  given by 

but when y [ P  + (5 - 3S)k;I is negative, the wave amplitude decays always to zero in an 
infinite time. In both cases either the waves or the medium in which the waves 
propagate dissipate all their energy, as is characteristic for non-conservative systems. A 
last remark about this class of equations concerns the possible invariance of (26)  for 
space-time reversal. Equations which are invariant for such a reversal automatically 
lead to constant amplitudes in non-resonant third-order interaction (Verheest 1980). 
(26)  is invariant as soon as y vanishes. But (27) also shows that the wave amplitudes 
(and the phases, incidentally) remain constant when y is not zero, if /3 vanishes and 
5 = 38. This corresponds with equations which are not invariant for space-time reversal 
and yet leave the wave amplitudes constant. The Sharma-Tasso-Olver equation ( 5 )  is 
one of those. The condition that an equation is invariant for space-time reversal hence 
is sufficient but not necessary to obtain constant amplitudes. 

Returning now to (25) ,  we find a second class of equations with q # 0 
3 

U t  +puxxx + Uxxxxx = 3S(3p - SU)UU, + SUU,,, + (26 + 35U)U,U,, +[U, 

p = - 1 ,  0, +1 (31)  
where S and C are constant parameters. The corresponding amplitude and phase 
equations are 

aaj s2 _-  ( 3 p  - S k f ) ~ ; .  
aaj 
a t 2  at2 200kj 

- -- _-  - 0  
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None of the fifth-order Kdv equations (6)-(10) shows the property of third-order 
decoupling. As the equations of the type (31)  are all invariant for a space-time reversal, 
the wave amplitudes indeed remain constant and hence the phases increase or decrease 
linearly in time. 

4. Constant wave amplitudes 

In the previous section we have found an example of a nonlinear equation which in third 
order gives waves that either are explosively unstable or decay to zero. Systems 
described by such equations act as energy sources or sinks, and this may give rise to 
difficulties in interpretation when the total number of waves is not specified, as would 
seem the case here. Hence one would expect it to be more natural or plausible to find 
systems of a conservative nature, in the sense that the non-resonant third-order 
interactions between some waves do not change the energy or the amplitude of each 
wave. Hence it is worthwhile to investigate in this section which classes of equations 
lead to constant amplitudes in third order. One finds three different types of such 
equations: 

(ii) ut +puxxx +quxxxxx = ~ p + ~ ‘ u ~ u u x + ~ ~ + ~ ‘ ~ ~ ~ ~ x x x + ~ 5 + S ’ ~ ~ ~ x ~ x x + r ~ ~  
2 3 (iii) ut + puxxx + uxxxxx = pu *UX + yuuxx + Su uxxx + yu f + suuxuxx + lux 

where p, p‘,  y, 8, S’ ,  (,[’ and 5 are constant parameters. The middle equation in (33)  is 
invariant for space-time reversal, the two others are not if y # 0. The Sharma-Tasso- 
Olver equation ( 5 )  belongs to the type (i) with p = y = -3 and S = 8’ = 6 = l=  0. The 
invariant equation of the type (ii) includes as special cases the Kdv equation itself, the 
mKdV equation (3) ,  the Kdv equation with higher-order dispersion (6)  and the fifth- 
order Kdv equations (7) to (10).  
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